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ABSTRACT 
 

In the last decades, different optimization methodologies through evolutionary algorithms 

have been proposed, explored and successfully applied to a wide range of problems. Each 

of these methodologies has distinct characteristics, typical advantages and characteristic 

disadvantages. However, there is a problem that is shared by almost all of them: 

controlling the diversity of solutions. While natural selection favors variations toward 

greater divergence, in artificial evolution candidate solutions are homogenized. The 

diversity of solutions directly affects algorithmic performance, especially in multi-

objective problems. Many authors have argued that promoting diversity would be 

beneficial in evolutionary optimization processes and that this could help prevent 

premature convergence into suboptimal solutions. In this paper we analyze some 

statistical indexes of biodiversity widely used in ecology and their impact when inserted 

in evolutionary algorithms. We also suggest practical ways to measure and promote 

diversity in multiobjective genetic algorithms. 

 

Key-words: Multiobjective Genetic Algorithm. Diversity. Pareto Frontier. 

 

 

RESUMO 
 

Nas últimas décadas, diferentes metodologias de otimização por meio de algoritmos 

evolutivos foram propostas, exploradas e aplicadas com sucesso a uma ampla gama de 

problemas. Cada uma destas metodologias possui características distintas, vantagens 

típicas e desvantagens características. No entanto, existe um problema que é 

compartilhado por quase todas elas: o controle da diversidade das soluções. Enquanto a 

seleção natural favorece variações em direção a uma maior divergência, na evolução 

artificial as soluções candidatas se homogeneízam. A diversidade das soluções afeta 

diretamente o desempenho algorítmico, principalmente em problemas multiobjetivos. 

Muitos autores argumentaram que a promoção da diversidade seria benéfica nos 

processos de otimização evolutiva e que isso poderia ajudar a evitar a convergência 

prematura em soluções abaixo do ideal. Neste trabalho analisamos alguns índices 

estatísticos de biodiversidade amplamente utilizados na ecologia e qual o seu impacto 
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quando inseridos nos algoritmos evolutivos. Sugerimos, também, formas práticas de 

medir e promover a diversidade em algoritmos genéticos multiobjetivo. 

 

Palavras-chaves: Algoritmo Genético Multiobjetivo. Diversidade. Fronteira de Pareto. 

 

Introduction 

Multiobjective Optimization Problems (MOP) generally involve the simultaneous 

optimization of conflicting objectives. This interaction results in a set of compromised 

solutions, known as the ideal set of Pareto (STIGLITZ et al., 2019). As none of the 

solutions in this set can be considered better than the others in relation to all objectives, 

the goal of multiobjective optimization is to find the greatest possible number of ideal 

Pareto solutions (or pareto-optimal, as they are also known) (LI et al., 2019). 

According to Alexandropoulos et al. (2019), Multiobjective Evolutionary 

Algorithms (MEA) are among the most powerful techniques to meet this requirement due 

to their inherent parallelism and their ability to explore the similarities between the 

solutions. The search for widely diversified pareto-optimal solutions is not, however, an 

easy task (LIU et al., 2016). The way in which solutions are selected can cause premature 

convergence of the population in restricted portions of the ideal Pareto set or even in 

solutions that do not belong to this set. Therefore, maintaining genetic diversity within 

the population is mandatory in order to find true and diverse pareto-optimal solutions 

(TOFFOLO et al., 2003). 

After the publication of Goldberg’s work (1989), which suggested the use of non-

dominance of solutions as a criterion to be observed during the optimization process, it 

generated an immense interest in MEA. The initial MEAs - Multiobjective Genetic 

Algorithm (MOGA) (FONSECA; FLEMING, 1993b), Non-dominated Sorting Genetic 

Algorithm (NSGA) (SRINIVAS; DEB, 1994a) and Niched Pareto Netic Algormm 

(HORN et al., 1994) - explored this suggestion intensely. 

These three algorithms showed that different ways of implementing the concept 

of nondominance can result in successful MEA. However, these algorithms could not 

guarantee the convergence to the Pareto ideal set, since an operator was missing to 

preserve the best solutions (elitism). Thus, the most recent MEAs focused mainly on how 

elitism could be introduced into a MEA. This resulted in three of the most successful 

MEAs in the literature: Strength Pareto Evolutionary Algorithm (SPEA) (ZITZLER et 

al., 2001), Pareto Archived Evolution Strategy (PAES) (KNOWLES et al., 1999) and 

Non -dominated Sorting Genetic Algorithm II (NSGA-II) cite deb2000fast, the latter 
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being the most popular. With the development of better algorithms, MEA has also been 

used in several practical applications (LAUMANNS et al., 2001). 

There is, however, a gap in the literature pointing to the absence of studies and 

analyzes related to the guarantee of diversified pareto-optimal solutions, as well as a way 

to monitor the diversification of solutions throughout the genetic process of MEA 

(BHOSKAR et al., 2015; GEN et al., 2014; PAQUETE et al., 2018). In this sense, Kumar 

et al. (2002) and Abraham et al. (2005) suggested a series of algorithms, which guarantee 

convergence for pareto-optimal solutions, but do not address the following two aspects: 

1. Convergent algorithms do not guarantee the maintenance of the diversity 

of solutions; 

2. The algorithms do not specify the time complexity for their convergence. 

 

Although it is difficult to perform the second task, even for simple objective 

functions (see (LAUMANNS et al., 2002)) and also for mono-objective problems, the 

first task is just as important as the task of converging to the ideal Pareto set. Deb et al. 

(2002b) suggested an MEA that tries to maintain diversity while converging on pareto-

optimal solutions. However, there is no evidence for its convergence properties. Knowles 

(2002) presented an adaptive archiving strategy. This strategy provides solutions in some 

"critical"regions of the Pareto set, but convergence can only be guaranteed for solutions 

at the ends of the Pareto set, promoting the agglomeration of solutions in extreme regions 

of the objective functions and, consequently, decreasing the diversity of solutions. 

In this way, the main objective of this work is to identify a statistical index that 

measures the biodiversity of an ecosystem and to propose a way to integrate this index 

with the MEA, providing the MEA with a way to monitor the diversity of the solutions 

that are being generated during the evolutionary process of the population. 

 

1 Evolutionary Computing 

 

Evolutionary Computing (EC) is a branch of research that comprises a set of 

search and optimization techniques based on the principles of biological evolution, such 

as natural selection and genetic inheritance, to solve different types of problems. These 

techniques are being increasingly used to solve a wide variety of problems, ranging from 

practical applications in industry and commerce to scientific research (EIBEN et al., 

2007). 
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Through EC techniques, a population of individuals is created that reproduce and 

compete with each other for survival. The best individuals are more likely to survive and 

transfer their characteristics to new generations. 

The main EC techniques are Evolutionary Strategies (ES), Evolutionary 

Programming (EP), Genetic Programming (GP) and Genetic Algorithms (GA) 

(PEDRYCZ; GOMIDE, 1998; BANZHAF et al., 1998). All of these techniques use the 

same basic principle as the EC, but operate in different ways. 

ES codes encode a population into a single vector of individuals with real values 

and their main idea is to combine the individuals, through crossing, to generate a 

descendant that will replace the worst individual in the population. The first algorithm 

using an evolutionary strategy was developed in 1964 at the Technical University of 

Berlin (KUSIAK, 2000). 

EP uses prediction of the behavior of finite state machines and their optimization 

(PEDRYCZ; GOMIDE, 1998). In this way, each individual represents a finite state 

machine. The selection of individuals is based on elitism. 

GP is a technique for automatic generation of computer programs proposed by 

Koza (1992), inspired by the GA theory proposed by Holland (1975). It is possible to 

create and manipulate software genetically using GP and applying concepts inherited 

from biology to generate computer programs automatically. 

GAs are algorithms that model a solution to a specific problem in a data structure 

and apply operators that recombine these solutions while preserving critical information. 

The GA were conceived by Holland (1975), with the initial objective of studying the 

phenomena related to the adaptation of species and natural selection that occur in nature, 

as well as to develop a way of incorporating these concepts to computers (MITCHELL, 

1998). GA and GP are the two main research fronts in evolutionary computing. 

The next section presents the main concepts of GA, EP, GP and ES will not be 

studied in this proposal. More detailed information about these techniques can be found 

in several works (BäCK; SCHWEFEL, 1993; De Jong, 2006; EIBEN et al., 2007). 

 

2 Multiobjective Optimization 

 

In a simple optimization problem (mono-objective) the search space is generally 

well defined. But when the problem has multiple objectives, contradicting each other, 

there is not only a single optimal solution, but a set of possible solutions. 
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Even though some real-world problems can be reduced to a single objective, it is 

often difficult to summarize all the characteristics of the problem in a single objective and 

solve it using mono-objective optimization techniques, such as GA (ABRAHAM; JAIN; 

GOLDBERG, 2005). Thus, setting multiple goals is often the best way to solve a multi-

objective problem. 

Multiobjective optimization seeks to find solutions to problems that have 

conflicting objectives, that is, if it is possible to improve the outcome of one of the 

objectives, the other objective of the problem will be impaired. A function f1 is said to 

conflict with a function f2 when it is not possible, at the same time, to improve the value 

of both. 

A didactic example that illustrates this type of problem is that of a car trip in which 

you want to minimize travel time and fuel consumption (cost). It is known that the more 

a vehicle is accelerated to reduce travel time, the more fuel is used. Mathematically, the 

multi-objective optimization problem can be formulated as presented by (DIAS; 

VASCONCELOS, 2002), by the Equation 1, as fallows. 

 

 

(1) 

 where x is the vector of n decision variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 . The 

values 𝑥𝑖
(𝐿)

 and 𝑥𝑖
(𝑈)

, represent the minimum and maximum values respectively for the 

variable 𝑥𝑖 . These limits define the decision variable space or decision space D. In 

addition, the x vector will also be referred to as solution. 

The J inequalities (gj) and the K equalities (hk) are called constraint functions. A 

feasible x solution will be one that satisfies the J + K constraint functions and the 2n 

limits. Otherwise, the solution will not be feasible. The set of all feasible solutions form 

the doable region or search space S. 

Each of the M objective functions f1(x), f2(x), ..., fM (x) can be maximized or 

minimized. The vector objective functions f(x) forms a multi-dimensional space called 

objective space Z. So, for each x solution in the decision space, there is a f(x) in the 

objectives space. This is a fundamental difference in relation to the optimization of simple 

objectives, whose objective space is one-dimensional. 
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The mapping then takes place between a x (n-dimensional) vector and a f(x) (M-

dimensional) vector. For example, if each element of x and f(x) is a real number, then f(x) 

is defined as f(x): 𝑅𝑛 → 𝑅𝑀. 

 

2.1 Pareto-optimal solutions 

 

Making decisions implies a process that consists of several factors and whose 

objective is to find the best solution. In some cases, it is possible to find several good 

solutions, none of which is quantitatively better than the other. For example, when buying 

a car, one can assume that one is looking for a car with the lowest price and the greatest 

comfort. Figure 1 illustrates several alternatives to choose from. 

 

Figura 1 – Car purchase example, considering cost and comfort. 

 

The goal is to minimize cost and maximize comfort. In this case, there are five 

possible purchase options. Intuitively, solution 1 is discarded, as solution 5 provides more 

comfort for the same price. Solution 2 is also discarded, as solutions 3 and 5 provide more 

comfort than solution 2 and at a lower price. There are then three solutions (3, 4 and 5) 

that are good alternatives for purchase. In quantitative terms, none is better than the other, 

as one is more comfortable, but less expensive, and vice versa. There is then a balance 

between the objectives. The greater the comfort, the higher the price of the car and the 

cheaper, the lower the comfort of the car. 

It is said that a solution dominates another if its values are better in all objectives, 

or are better in one objective and tie in others. For example, solution 1 dominates solution 

2, but is dominated by solutions 4 and 5. No solution dominates solutions 3, 4, and 5. 

Solutions 3, 4, and 5 can be said to be equally good. So there is a set of optimal solutions. 
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This set is called set of non-dominated solutions. The other solutions (1 and 2) form the 

set of dominated solutions. 

Considering that the non-dominated points are in a continuous space, a curve can 

be drawn connecting these points. All points contained in the curve form the front of 

Pareto or frontier of Pareto. 

 

2.1 Goals in Multiobjective Optimization Problems 

 

In a multiobjective optimization problem, all Pareto-optimal solutions, that is, the 

solutions found at the Pareto frontier, are equally important. Deb et al. (2002a) highlights 

two important goals in multiobjective optimization: 

• Find a set of solutions that are as close as possible to the Pareto frontier; 

• Find a set of non-dominated solutions with the greatest possible diversity. 

 

The first goal is common for any optimization process. Solutions very far from 

the Pareto Frontier are not desirable, as this indicates that these solutions are far from the 

best solutions. However, finding the greatest diversity within non-dominated solutions is 

a specific goal for multiobjective optimization. Figure 2a presents a Pareto frontier with 

a good distribution of solutions when compared to that shown in Figure 2b. 

 

 

 

 

 

 

(a) Balanced distribution          (b) Unbalanced distribution 

Figura 2 – Distribution of solutions along the Pareto frontier 

In Figure 2b the solutions are distributed only in some regions, with each region 

privileging one of the objectives, which characterizes these solutions as unbalanced. It is 

necessary to ensure the greatest possible coverage of the frontier, making it possible to 

obtain a set of solutions with balanced objectives. 
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2.3 Differences between Single-Objective and Multi-Objective Optimization 

 

Deb et al. (2002a) identifies three important differences between multi-objective 

optimization and single-objective optimization: 

• In single-objective optimization problems, the goal is to find an optimal 

global solution (maximum or minimum). In multiobjective problems, there can be more 

than one global optimum. Finding the set of solutions on the Pareto frontier is as important 

as preserving the diversity in this set. An efficient algorithm for multiobjective 

optimization must consider both aspects; 

• In multiobjective optimization problems, two spaces are considered (that 

of variables and that of objectives) instead of one. Single-objective optimization problems 

work only in the variable space, as they seek only one solution in the objective space. 

Maintaining diversity in both spaces increases the complexity of the problem, since the 

proximity between two solutions in the variable space does not imply proximity in the 

objective space; 

• Traditional methods of multiobjective optimization are based on a simple 

function that weighs each objective. They can also treat each objective separately, using 

the other objectives as restrictions. Therefore, a multi-objective optimization problem can 

be converted into a simple optimization problem. 

 

2.4 Pareto Dominance Operator 

 

Multiobjective problems, unlike single-objective problems, have more than one 

solution. These solutions are known as non-dominated solutions or efficient solutions. 

If there are M objective functions fm, m = 1, ..., M the operator ◁ between two 

solutions, x ◁ y, means that the solution x is better than the y solution on at least one 

particular goal. Conversely, x ▷ y denotes that the x solution is worse than the y solution 

for some purpose. 

One x(1) solution is said to dominate another x(2) solution (represented 

mathematically as 𝑥(1) ≺ 𝑥(2) if the following conditions are met: 

• The solution x(1) is no worse than x(2) in all objectives, that is, 𝑓𝑚(𝑥(1)) ⋫

𝑓𝑚(𝑥(2))  for all m = 1,2, ...,M; 
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• The solution x(1) is strictly better than x(2) at least in one objective, that 

𝑓𝑚(𝑥(1)) ◁ 𝑓𝑚(𝑥(2)) at least in one m = 1,2, ...,M. 

If both conditions are met, it can be said that x(1) dominates x(2): 

• x(1) dominates x(2); 

• x(1) is not dominated by x(2); 

• x(1) is not inferior than x(2). 

If the solution x(1) is not dominated by any solution x(i) in all the feasible space, it 

is said that x(1) is an efficient non-dominated solution or Pareto-optimal solution. 

In Figure 1, solution 5 dominates solution 1 (5 ≺ 1), and solution 3 dominates 

solution 2 (3 ≺ 2). Therefore, the concept of dominance allows to compare solutions with 

multiple objectives. 

Thus, using these definitions, when a finite set of solutions is found, it becomes 

possible to make comparisons of the solutions two by two, dividing them into a group 

called P dominated solutions and P’ non-dominated solutions. P’ solutions are not 

dominated by any other P solution. If the P’ non-dominated set covers the entire doable 

search space, it is called the global Pareto-optimal set. Figure 3 illustrates the spaces of 

the decision variables and objectives. The global Pareto-optimal frontier is also shown in 

this figure. 

The Pareto-optimal frontier illustrated in Figure 3 is formed by values of objective 

functions 𝑓(𝑥) = (𝑓1(𝑥), … , 𝑓𝑚(𝑥)) corresponding to each solution in the search space. 

Therefore, for each of the solutions found in the variable space, these solutions are 

represented in the objectives space, evaluating each one of them in each of the existing 

objectives. 

 

3 Genetic Algorithms 

 

GAs can be defined as iterative methods that contain a population with a fixed 

number of individuals, each of which is represented by a finite linear sequence of 

symbols, called chromosomes, that encode a possible solution to a given problem, or, 

depending on coding, part of the solution. These possible solutions are encoded in a space, 

called a search space, which can contain all possible solutions to the problem in question. 

An aptitude value is associated with each chromosome and this value represents how 

suitable the solution is the solution it encodes. In this way, individuals can be changed 
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until an individual is obtained who codifies a satisfactory solution to the problem 

addressed. 

 

 

 

 

 

 

 

 

 

Figura 3 – Local and global Pareto-optimal solutions. 

 

GAs are frequently used in search problems, having found wide application in 

several scientific areas, among which can be mentioned those related to solution 

optimization problems, machine learning, development of mathematical strategies and 

formulas, analysis of economic models, engineering problems, diverse applications in 

biology such as bacterial simulation, immune systems, ecosystems and discovery of 

topologies and properties of organic molecules (GOLDBERG, 1989; HAUPT; HAUPT, 

2004; CHAMBERS, 2001; MICHALEWICZ, 1996; MITCHELL, 1998). 

The functioning of an GA occurs from the initialization process, which creates a 

population of individuals representing initial solutions that are then submitted to the 

evolution process, which goes through the following steps: evaluation, selection, crossing 

and mutation. Each of these steps will be covered below. 

 

3.1 Avaliation 

 

It is at this stage that the first step for selection is taken. Each individual receives 

an evaluation according to their degree of aptitude, that is, it measures how good the 

individual is in solving the problem in question. Taking into account that this task is 

performed for each individual in each generation, it can be said that its computational cost 

is relatively high. 
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3.3 Selection 

 

In the selection stage, individuals are selected for the next stage, the crossing. The 

degree of aptitude of each individual is used to make a draw in which the most apt 

individuals are more likely to be chosen. 

The following are some selection methods. 

Roulette: In this method, individuals from a population are selected for the next 

generation using roulette. Each individual in the population is represented in the roulette 

by a slice proportional to their fitness index. Thus, individuals with greater aptitude 

occupy larger slices of the roulette, while individuals with less aptitude occupy smaller 

slices. For the selection of individuals, the roulette wheel is rotated N times, where N is 

the initial population number. Each time the wheel stops spinning, the chromosome 

selected by the marker will be copied to the next generation. Chromosomes with more 

roulette space are more likely to be selected. 

In Figure 4 a roulette is shown that reflects the fitness values of the 5 individuals 

(S1, S2, S3, S4 and S5) of a population, with individual S2 (with the largest slice) being 

selected by the marker. 

 

Figura 4 – Roulette selection method. 

 

Tournament: When this method is used, a n number of individuals in the 

population is chosen at random and with the same probability. The chromosome with the 

highest fitness among these n chromosomes is selected for the intermediate population. 

This process will be repeated until the intermediate population is filled. 

You can also add a technique called elitism to these methods. In this technique, 

all individuals are ordered according to their aptitude value and individuals who fall 

below the average value are discarded. This technique results in a population that will 

have individuals with an aptitude value above the average of the previous population. 

This technique also ensures that the best individual obtained in the current generation will 



Perspectivas em Ciências Tecnológicas 

126                     Perspectivas em Ciências Tecnológicas, v. 9, n. 9, Jun. 2020, p. 115-??? 
 

be present in the next generation that is being generated, preserving their genetic 

characteristics. 

 

3.4 Crossover 

 

Selected individuals, they pass with a pre-established probability for the crossing 

process. This probability is called the crossing rate. In this process, two individuals are 

selected for the crossing, generating two new individuals that will compose the next 

generation, thus replacing the two selected individuals. 

Among the crossing methods, we can cite (GOLDBERG, 1989): 

One Point Crossover In this method, a cutoff point p is chosen whichever 1 < p 

< w, w being the length of the chromosome. The first child chromosome will receive the 

same genes as parent 1 between the 1 and p index. The following genes will be populated 

with the genes from parent 2 between the p + 1 and w index. The second child 

chromosome will be filled in the opposite way, that is, it will receive the same genes as 

parent 2 included between the 1 and p index. The following genes will be filled with the 

parent’s genes between the p + 1 and w index. Figure 5 illustrates an example of this type 

of crossover. 

Two Points Crossover At the crossing of 2 points, 2 points, p1 and p2, are 

randomly chosen from the parent chromosomes such that p1 < p2. The first child 

chromosome will have the same genes as the parent 1 chromosome. However, the region 

comprising p1 and p2 will have the parent 2 genes. The second child chromosome will 

have the same genes as the parent 2 chromosome. the region comprising p1 and p2 will 

have the genes of parent 1. Figure 6 illustrates an example of this type of crossover. 

 

Figura 5 – One Point Crossover. 

 

Figura 6 – Two Points Crossover. 
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3.6 Arithmetic Crossing 

 

Arithmetic crossover is defined as a linear combination of two vectors. If x1 and 

x2 are crossed, the offspring will be 𝑥′1 = 𝑎 ⋅ 𝑥′1 + (1 − 𝑎) ⋅ 𝑥′2  e 𝑥′2 = 𝑎 ⋅ 𝑥′2 +

(1 − 𝑎) ⋅ 𝑥′1, where a is a random number in the range [0,1]. 

 

3.7 Mutation 

 

Mutation is a process that guarantees the exploration of several alternatives and is 

applied randomly to individuals of the current generation with a predefined probability 

rate called mutation rate. The mutation is nothing more than some kind of change that 

must be made on a gene. This change depends on how the gene was designed. In a 

chromosome with binary encoding, for example, the mutation changes a gene with a value 

of 1 to a value of 0 and vice versa. In a chromosome with real or full encoding, the gene 

is changed by changing the current value of the gene for some other value among the 

possible valid values for the gene in question. 

Although randomness is an intrinsic characteristic of GA, they do a targeted 

search. The new individuals generated have characteristics of the previous population, 

and these characteristics are used as a history that directs the search for a better result than 

the result generated by the previous population. 

In Algorithm 0.1 the basic steps of an GA are presented in which the stopping 

criterion is given by the parameter maxGenerations. 

 

4 Multiobjective Genetic Algorithms 

 

To solve multiobjective optimization problems, GA can be used, transforming the 

multiobjective optimization problem into a mono-objective optimization problem, using 

some preference criteria to find a single solution. This solution must have acceptable 

values in all objectives according to the established preference criteria, such as, for 

example, prioritizing one or more objectives giving weights to them. If more than one 

solution is required, it is necessary to run the algorithm repeatedly by changing the 

preference criteria. 



Perspectivas em Ciências Tecnológicas 

128                     Perspectivas em Ciências Tecnológicas, v. 9, n. 9, Jun. 2020, p. 115-??? 
 

On the other hand, it is also possible to obtain multiple solutions in an GA 

execution to solve multiobjective problems, trying to find the solutions that are on the 

Pareto frontier considering the dominance of these solutions. 

 

GAs that consider the dominance of solutions using a set of objective functions 

are called Multiobjective Genetic Algorithms (MOGA). 

Goldberg (1989) states in his book that the use of GAs for multiobjective problem 

solving started when Schaffer (1985) implemented the first version of an MOGA called 

VEGA (Vector Evaluated Genetic Algorithm). In the proposed algorithm, considering a 

population of N individuals and K objectives, this population is divided into K sub-

populations with N/K individuals in each one. The GAs selection operator is applied 

separately for each of the subpopulations, that is, for the k subpopulation, only the k-th 

objective is considered for the purposes of the selection, and, subsequently, these 

subpopulations and the other genetic crossover and mutation operators apply. 

The work of Coello (2006) provides an overview of the history of multiobjective 

optimization. This work divides the existing algorithms until then. The first of them has 

algorithms that feature the greater emphasis on simplicity. These algorithms include 

VEGA, Nondominated Sorting Genetic Algorithm (NSGA), Niched-Pareto Genetic 

Algorithm (NPGA) and Multi-Objective Genetic Algorithm (MOGA). The second 

generation of algorithms places greater emphasis on efficiency. Among the algorithms 

classified in this generation are: Strength Pareto Evolutionary Algorithm (SPEA), 

Strength Pareto Evolutionary Algorithm II (SPEA2), Pareto Archived Evolution Strategy 

(PAES) and Nondominated Sorting Genetic Algorithm II (NSGA-II). Table 1 shows a 

summary of the main AGMO. 

Among the various methods cited to find non-dominated solutions, in this work 

the focus will be given to the NSGA-II algorithm. The interest in this algorithm in 
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particular is due to the fact that it is one of the most popular and one that has better results 

reported in the literature when compared to other approaches (ZITZLER; LAUMANNS; 

THIELE, 2001; ZONG-YI et al., 2008; ANTONELLI; DUCANGE; MARCELLONI, 

2014; MARTIN et al., 2014). The operation of the NSGA-II is detailed below. 

Tabela 1 – Different types of MOGA 

Acronyms Algorithm Reference 

VEGA Vector Evaluated Genetic 

Algorithm 

(SCHAFFER, 1985) 

WBGA Weight Based Genetic Algorithm (HAJELA; LIN, 1992) 

MOGA Multiple Objective Genetic 

Algorithm 

(FONSECA; FLEMING, 

1993a) 

NSGA Non-Dominated Sorting Genetic 

Algorithm 

(SRINIVAS; DEB, 1994b) 

NPGA Niched-Pareto Genetic lgorithm (HORN et al., 1994) 

PPES Predator-Prey Evolution 

Strategy 

(LAUMANNS; RUDOLPH; 

SCHWEFEL, 1998) 

REMOEA Rudoph’s Elitist Multi-Objective 

Evolutionay Algorithm 

(RUDOLPH, 2001) 

NSGA-II Elitist Non-Dominated Sorting 

Genetic Algorithm 

(DEB et al., 2002a) 

SPGA, 

SPEA2 

Strenght Pareto Evolutionary 

Algorithm 1 e 2 

(ZITZLER; THIELE, 

1998; ZITZLER; 

LAUMANNS; THIELE, 

2001) 

TGA Thermodynamical Genetic 

Algorithm 

(KITA et al., 1996) 

PAES Pareto-Archived Evolutionary 

Strategy 

(KNOWLES; CORNE, 1999) 

MOMGA-I, 

MOMGA-

II 

Multi-Objective Messy Genetic 

Algorithm 

(VAN VELDHUIZEN, 1999) 

PESA-I, 

PESA-II 

Pareto Envelope-Base Selection 

Algorithm 

(CORNE; NOWLES; 

OATES, 2000; CORNE et al., 

2001) 

 

 

 

4.1 Nondominated Sorting Genetic Algorithm II (NSGA-II) 

 

Proposed by (DEB et al., 2002a), this optimization method was based on its 

predecessor NSGA, which, in turn, was implemented based on the idea of (GOLDBERG, 

1989). The central idea of the NSGA is to classify individuals on non-dominated borders 

and apply a method to diversify the solutions as much as possible. 
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The difference between this implementation and that of a mono-objective GA is 

only in the way in which the selection operator is employed. Both the crossover operators 

and the mutation operators are identical to those used in the mono-objective version of 

the GA. 

NSGA-II presented solutions to problems found in NSGA, such as the high 

complexity of the proposed procedure for ordering non-dominance and the absence of 

elitism. To solve the aforementioned problems, NSGA-II defines a new procedure for 

ordering solutions based on the non-dominance criterion and creates a new concept, called 

crowding distance, which makes it responsible for maintaining the diversity of the 

population. It also defines a method called crowded comparison, which aims to compare 

the generated solutions. 

NSGA-II works with a P parent population to generate a Q daughter population. 

In the first generation, the initial population P0 is ordered by non-dominance. Each of the 

solutions present in the population P0 receives an aptitude value according to its level of 

non-dominance (1 for the best level, 2 for the next and so on). After this process, the 

selection, crossing and mutation operators are applied, thus obtaining a daughter 

population Q0. Both existing populations are N in size. 

The NSGA-II algorithm pseudocode is presented in Algorithm 0.2 with all the  

details of the iterative process. 
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In NSGA-II it is necessary to calculate the crowd distance for each solution on a 

Fi frontier. The crowd distance d of a solution j, denoted by dj, represents an estimate of 

the perimeter formed by the cuboid whose vertices are its closest neighbors. Figure 7 

shows the crowd distance for a i solution. 

The crowd distance calculation can be seen in detail in the Algorithm 0.3. where: 

fk: objective function value k 

Im: list ordered descending by fk of the solutions in Fi 

𝑑𝐼𝑡
𝑚: crowd distance of the t-th solution in Im 

𝑓𝑘

(𝐼𝑡+1
𝑚 )

𝑎𝑛𝑑𝑓𝑘

(𝐼𝑡−1
𝑚 )

: fk neighbors of the t-th solution in Im 

fk
max and fk

min: global maximum and minimum for the fk 
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d =  

Figura 7 – NSGA-II crowd distance calculation in a two-dimensional space (DEB et al., 

2002a) 

 

 

 

5 Diversity 

 

In this section we will describe how diversity is treated in the context of MEAs 

and how it is treated in the context of ecosystems. 

 

5.1 Diversity in Multiobjective Evolutionary Algorithms 

 

In evolutionary algorithms, the term diversity indicates differences of individuals. 

Figure 8a is an example of a population with a high level of diversity, while Figure 8b 

exemplifies a population with a low level of diversity. 

 

(a) Population with high diversity     (b) Population with low diversity 

Figura 8 – Population with high and low diversity. 

f 2 

f 1 

i - 1 
i 

i+1 

0 

d i 

d i+1 

d N =    
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Diversity is an important characteristic of a population, because without it there is 

a risk that the individual with the greatest aptitude will dominate the entire population 

before the search space is properly explored. This control of diversity in MEA is 

commonly done, using the Hamming distance pairwise as follows: 

  

(2) 

 

where dh(ij,ik) is the Hamming distance between two individuals and n is the 

number of individuals in the population. The shorter the distance, the less diversity. 

Population diversity can also be computed using the inertia method. When 

calculating the inertia of a binary string, each bit is considered an independent dimension. 

In this case, the coordinates of the centroid (c1,c2,c3,...,cL) of this string of bits P of length 

L are computed as: 

  

(3) 

 

and the inertia on the centroid is like: 

  

(4) 

 

where sij is the bit in position i of the j-th string and ci is the i-th centroid 

coordinate. 

The great disadvantage of these methods is the computational effort required to 

calculate the measurements in pairs for each generation of MEA. This work sought 

inspiration in the way how diversity is calculated in ecosystems (a subject that will be 

discussed in the next subsection). 

 

5.2 Diversity in ecosystems 

 

Ecosystem diversity is calculated based on two indices: species richness and 

equitability. 

The species richness is simply the total number of S species in a sample unit. 

Consequently, the species richness is very dependent on the sample size, because the 
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larger the sample, the greater the number of species that can be sampled. Thus, the species 

richness says little about the organization of the community, increasing according to the 

area, even without changing the habitat. 

The equitability expresses the way in which the number of individuals is 

distributed among the different species, that is, it indicates whether the different species 

have similar or diverging abundance (number of individuals). 

Therefore, diversity is a function of the number of species and the fairness of the 

importance values of the same. For example, we can see in Figure 9 that both Sample A 

and Sample B have the same species richness (S = 4). However, Sample A has high 

equitability and low dominance, while Sample B has high dominance and low 

equitability. Thus, it can be concluded that: 

1. Equitability is the inverse of dominance; 

2. Sample A is more diverse than Sample B. 

 

(a) Sample A           (b) Sample B 

Figura 9 – Species richness. 

Table 2 lists the most used indexes in the literature for the calculation of ecosystem 

diversity. For these equations we have that pi is the proportion of the species in relation 

to the total number of specimens found in the surveys carried out; ni is the number of 

individuals of each species; N is the total number of individuals in the sample; and Nmax 

is the number of individuals of the most abundant species. 

 

The Menhinick index (Ime) is a simple diversity index that considers only the 

number of species and the square root of the total number of individuals. The Simpson 
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index (Isi) has an advantage over the Menhinick index, as it not only considers the number 

of species and the total number of individuals, but also the proportion of the total 

occurrence of each species. The McIntosh index (Ima) is a simple and more complex index 

than the Menhinick, as it considers the total number of individuals and the distribution 

between species. The Berger-Parker index (Ibp) is simple when compared to the Simpson 

index, but efficient. He considers the largest proportion of the species with the largest 

number of individuals. The most used index to measure the diversity of a community is 

the Shannon index (Ish), as it incorporates both wealth and equitability. Equitability is 

most commonly expressed by the Pielou Index: 

  
(5) 

  

H’maximum being the maximum possible diversity that can be observed if all 

species show equal abundance whereas H’(observed) is real diversity. The value of 

H’maximum can be calculated as: 

  H’(maximum) = log S (6) 

 

As can be seen, these indices are relatively simple and at the same time widely 

used by statisticians in ecosystems. The simplicity of these indexes is due to the fact that 

they do not need to compare the position of a certain individual in relation to the other, 

which for the computing context brings great efficiency when compared to the distance 

calculation methods used in the MEA. 

The biggest barrier that prevents the use of these indexes as a way to measure the 

diversity of solutions in MEA is to be able to identify categorize the solutions as 

belonging to a certain species, since the search space is not divided into micro or macro 

regions. In this way, it is necessary to find a way to create regions in the search space in 

such a way that they can be interpreted with species in these statistical indexes. In the 

next section, we propose a way to dissolve this barrier. 

 

6 Proposed Method 

 

So that the statistical indexes that measure the biodiversity of ecosystems can be 

used within the context of the MEA, the concept of artificial speciation was created, in 

which pseudopartitions are created in the search space. Each pseudopartition represents 
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the region (or habitat) where a particular species is concentrated. It is understood, 

therefore, that each solution located in the pseudopartition i belongs to the species i. In 

this way, pseudopartitions play the same role that species play in calculating the indices 

in Table 2. 

Figure 10 exemplifies how artificial speciation can be applied to the search space. 

In this figure, each black square represents a solution in the search space and each 

diagonal (red lines) represents the area occupied by a given species. Therefore, solutions 

that are on the same diagonal belong to the same species. The partitioning size (number 

of diagonal lines) can be adjusted according to the problem being addressed. 

 

Figura 10 – Artificial Speciation Example. 

 

Since artificial speciation makes each solution belong to a specific species, the 

control of the population’s diversity can be done based on the statistical indexes of 

biodiversity. In this way, these indexes can be inserted in any class of Evolutionary 

Algorithm. 

 

7 Experiments and Results 

 

In order to understand how the use of statistical indexes behave with data in a 

search space in optimization problems, artificial data sets were created that are distributed 

in groups that may be more dense or less dense in relation to the distribution of points. 

Of these data sets, 11 were created with random distribution, varying only the 

concentration of the points. Figure 11 exemplifies 3 of these sets. 
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Figura 11 – Random data distribution. 

 

Figure 11a has a tendency to concentrate at the center. This is because in real 

cases, MEA can converge to great locations. The purpose of this data set is to simulate 

the concentration in these great locations. Figure 11b simulates a situation in which the 

solutions would be dispersed. Figure 11c simulates the situation in which solutions are 

dispersed, but there are a greater number of solutions. 

In these experiments 176 datasets were created that simulate 2 species that extend 

mainly latitudinally, 176 datasets that simulate 3 species that extend mainly latitudinally, 

176 datasets that simulate 4 species that extend in elliptical shape over 4 quadrant of the 

search space and 176 data sets that simulate 5 species that extend in an elliptical format 

across 5 quadrant of the search space. Figures 12, 13 and 14 exemplify some of these data 

sets. 

The pattern of the data created follows the pattern shown in these figures. The 

difference between one set and another is the number of points per group, which can be 

50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 or 6000 

points by group. In all, 715 artificial data sets were created. 

After creating the data, artificial speciation was created on each of these 715 

data sets. In order to understand what is the best way to partition data into species, we 

created 4 types of partitioning that we label as: strip partitioning, checkered 

partitioning, ray partitioning and grill partitioning. 

Figure 15 exemplifies these 4 types of partitioning. In this figure, data set 579 with 

8 partitions (species) was chosen arbitrarily. 

We can see in Figure 15 that regardless of how the search space for this data set 

is partitioned, it is possible to identify that there are partitions with greater or lesser 

concentration of solutions. This is desirable, since the indexes will be able to reflect the 

diversity of the population based on this phenomenon. 
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In the experiments, we used the four types of partitioning for each of the 715 data 

sets. For the checkered and grill partitioning we tested with 2, 4, 5, 8 and 10 partitions. 

For the ray and strip partitioning we tested with 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 partitions. 

Thus, a total of 21,450 simulations were carried out. 

The average of the index results for each partitioning can be seen in Figure 16. In 

this figure, we can see that the Shannon index was the one that best reacted to changes in 

diversity in the population, standing out from the other indexes. The greater the number 

of partitions, the smaller the area of these partitions. Being smaller, the probability of 

having some partitions with many solutions and others even empty is high. Because of 

this, the Shannon index results in higher values for scenarios where the number of 

partitions is higher. 
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Figura 12 – Concentrated distribution over 3 latitudinal bands. 
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Figura 13 – Concentrated distribution over 4 elliptical areas. 

 

Since the main focus of the MEA is on obtaining diversified solutions on the 

Pareto frontier, we also simulate the behavior of these statistical indices in artificial data 

that are distributed as if they were on a Pareto frontier whose objective is to minimize 

two functions. The same configurations of the previous simulations were used, but with 

other data sets. In these new data sets n points (solutions) were randomly distributed 
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simulating a Pareto frontier. Each simulation also changes the number of points that are 

distributed along the Pareto frontier. It starts with 5 points and then, with each new 

simulation, 10 more points are added until the limit of 305 points is reached. Figure 17 

illustrates the distribution of points along the Pareto frontier. In this Figure 35 points and 

8 partitions were used. 

 

Figura 14 – Concentrated distribution over 5 elliptical areas. 
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Figura 15 – Used partitioning (artificial data set 579). 

 

The average of the indices after these simulations can be seen in Figure 18. We 

can see in this figure that the Shannon indexes, with the exception of chess partitioning, 

also better reflect the diversity at the Pareto frontier when compared to the other indexes. 

Therefore, we suggest adopting the Shannon index as an index to monitor the diversity of 

the population and the Pareto frontier in MEA. 

Among the 4 types of partitioning, we suggest the use of ray partitioning, as it is 

the one that best simulates the behavior of population convergence in the context of MEA. 

In this case, the rays must converge in the same direction as the population converges. 

This will depend on the purpose of the functions (maximization or minimization). 

As a suggestion, we propose a modification of the NSGA-II (0.2) to insert the 

Shannon index as a control of population diversity. We chose NSGA-II because it is the 
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most popular MEA in the literature. Figure 19 shows how the adapted NSGA-II works 

and Figure 20 is the algorithm that shows how to use the shannon index to control 

diversity. 
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Figura 16 – Average indexes for each partitioning. 
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Conclusion 

 

In this work, we propose a more efficient way to control the diversity of the 

population of MEA integrating the statistical indexes applied in ecology for similar 

purposes. 

 

Figura 17 – Used partitioning (artificial data set 579). 

 

The biggest problem encountered in using these indexes was the lack of a 

speciation technique that could separate the solutions by species. In this work, 4 ways of 

doing this were proposed by partitioning the search space. 

The results showed that ray partitioning is the best way to insert these indices in 

MEA. The index that was most suitable for the purpose proposed in this work was the 

Shannon index. This index clearly reflects the diversity of solutions. 

We also propose an amendment to the NSGA-II as an example of how to insert 

statistical indexes of diversity into an MEA. As future work we want to apply the 
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modified NSGA-II to real problems and compare the diversity of its solutions with 

algorithms from the literature. 

 

Figura 18 – Average indexes for each partitioning considering only the Pareto frontier. 
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Figura 19 – Operation of the modified NSGA-II. 
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Figura 20 – Operation of the modified NSGA-II. 
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