
HARDWARE/SOFTWARE CO-DESIGN FOR MATRIX INVERSION 

 

HARDWARE/SOFTWARE CO-DESIGN PARA INVERSÃO DE MATRIZES  

 

 

Maurício Acconcia Dias* 

 

 

ABSTRACT 

 

Matrix inversion is a well-known widely used operation. Control systems usually demand a 

high number of matrix operations that need to be performed meeting real-time constraints. 

Methods that are able to optimize execution time of matrix inversion operations, as the LU 

decomposition, are good alternatives. Considering this scenario, this work presents a 

hardware/software profile-based method applied to the LU decomposition algorithm in order 

to optimize matrix inversion execution time. The optimization method used in this work 

resulted in a hardware/software co-design whose optimizations are focused on execution 

time, precision and area. Software and hardware optimization tools were used. Two different 

soft-processors were used to create the hardware/software co-design systems analyzed in this 

work, Leon 3 and Altera's Nios II. Nios II processor with hardware custom instructions and 

a dedicated co-processor achieved better execution times compared to a quadcore Leon-based 

system suggesting that simple hardware systems are able to achieve better results. 

 

Keywords: Hardware/Software co-design. Matrix Inversion. Reconfigurable Computing. 

Soft Processor. 

 

RESUMO 

 

A inversão de matrizes é uma operação matemática amplamente utilizada. Sistemas de 

controle demandam normalmente um alto número de operações com matrizes que precisam 

ser executadas em tempo real para que o sistema atinja os requisites de tempo. Métodos que 

são capazes de otimizar a operação de inversão de matrizes, como a decomposição LU, se 

mostraram boas alternativas. Considerando o cenário apresentado, este trabalho apresenta 

um método de hardware/software co-design baseado em profiling aplicado ao algoritmo de 

decomposição LU para otimizar seu tempo de execução. O método de otimização utilizado 

neste trabalho resultou em um hardware/software co-design cujas otimizações possuem foco 

no tempo de execução, precisão e área. Ferramentas para otimização e hardware foram 

utilizadas. Dois diferentes soft-processors foram utilizados para criar os hardware/software 

co-designs analisados neste trabalho, Leon 3 e Nios II da fabricante Altera. Os melhores 

tempos de execução foram atingidos pelo processador Nios II com instruções customizadas 

e um co-processador, em comparação com um sistema quadcore compost por processadores 

Leon 3. Este resultado sugere que hardwares simples são capazes de atingir bons resultados. 

 

Palavras-chave: Hardware/Software co-design. Inversão de Matriz. Computação 

Reconfigurável. Soft Processor. 

                                                           
* Universidade de São Paulo (USP) – Laboratório de Robótica Móvel (LRM). macdias@icmc.usp.br  

mailto:macdias@icmc.usp.br


Perspectivas em Ciências Tecnológicas 

54                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Introduction 

 

Matrix inversion is a well-known operation that is used by several algorithms in 

different areas: obtaining air gamma-ray spectrum, message encryption, multi-component 3-

D imaging of ground penetrating radar data, solve simultaneous equations. Matrix inversion 

algorithms usually execute the procedure a considerable number of times during execution 

and this procedure consumes a considerable amount of time to be executed. Hardware and 

software optimizations can accelerate the execution of matrix inversion algorithms. Before 

analyzing this work optimizations, the used matrix inversion algorithm is presented. 

Matrix inversion is a very important mathematical procedure (PRESS et al, 2002). 

Considering that matrices are used in a lot of algorithms for representation and calculus, as 

presented, all basic operations involving matrices should be optimized and available for each 

one of these algorithms. Matrix addition and subtraction are more direct operations and easier 

to implement. Most of the problems occur when is necessary to use matrix multiplication, 

division, and inversion. Many researchers work with matrix multiplication algorithms and 

this problem is already solved in many ways (BLASER, 2013). The division of two matrices 

is a very complex problem. Due to the high complexity of the division operation the usual 

solution is to multiply the matrix by its multiplicative inverse. This operation, for 2 matrices 

A and B with size n x n is presented by equation 1 and the definition of a multiplicative inverse 

for a matrix A is presented by equation 2 where I is the identity. 

 

Square matrices that have an inverse are called invertible, otherwise they are called 

singulars or degenerates. Non-square matrices are not invertible. However, in some cases, 

these matrices can have a left inverse or a right inverse. Consider a matrix A with size mxn, 

if the rank of matrix A (that is the dimension of the vector space generated (or spanned) by 

its columns) is equal to n, then matrix A has a left inverse. Otherwise, if A has rank m, then 

it has a right inverse. Equation 2 presents 3 equal terms; the first term is a matrix 

multiplication where the inverse matrix is in the right position and in this case the right 



Perspectivas em Ciências Tecnológicas 

55                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

inverse should be used. The same procedure should be applied in the second term. A square 

matrix is singular if and only if its determinant is 0. Singular matrices are rare in the sense 

that if you pick a random square matrix, it will almost surely not be singular (PRESS et al, 

2002). There are lots of methods that can be used to find the multiplicative inverse of a 

matrix, in this work the method called LU decomposition was chosen. 

 

1 LU Decomposition 

 

In linear algebra, LU decomposition is a matrix decomposition which computes a 

matrix as the product of two other matrices: a lower triangular matrix (that has zeros above 

the main diagonal) and an upper triangular matrix (that has zeros below the main diagonal). 

The product sometimes includes a permutation matrix as well. LU decomposition is used in 

numerical analysis to solve systems of linear equations or calculate the determinant of a 

matrix. 

 

Equations 3 and 4 represents the LU decomposition where A is a square matrix, L is 

the lower triangular matrix and U is the upper triangular matrix. An invertible matrix admits 

an LU decomposition if, and only if, all its leading principal minors are different from 0. The 

decomposition is unique if the main diagonal of L (or U) consists only of 1's. The matrix has 

a unique LDU factorization under the same conditions (PRESS et al, 2002). To apply the LU 

decomposition to invert a matrix, consider the solution of linear equations. Equation 5 

presents a system that needs to be solved for x given A square matrix with size n x n. 

 



Perspectivas em Ciências Tecnológicas 

56                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

First the equation Ly = b is solved for y then the equation Ux = y is solved for x. It is 

important to notice that in both cases there are triangular matrices (lower and upper) which 

can be solved directly using forward and backward substitution. To find the inverse matrix, 

instead of vector b its considered a matrix B that is a square matrix with size n x n (Equation 

6). 

 

The same procedure previously presented can be used to solve each column of matrix 

X. Supposing that in this case matrix B is the identity matrix of size n. It would follow that 

the result X must be the inverse of A (PRESS et al, 2002). 

 

2 Related Works 

 

Hardware implementations for LU decomposition started with pipelined designs 

(THIBALT; MULLIN, 1994). Syed (2002) investigated a hardware interpreter for sparse 

matrix LU factorization. Presented results indicated that his algorithm needs a considerably 

fast floating-point unity and that the memory access is critical for execution time. Wang and 

Ziavras (2004) designed a hardware system composed of small processors to solve linear 

systems. Developed system was configured in an Altera EP20KE FPGA achieving 40MHz. 

Execution time achieve 41ms for a 118 x 118 matrix. Another work with LU decomposition 

and sparse matrices, by Johnson et. al. (2008), presented a hardware structure that had 

problems with power and floating-point operations. 

One way to efficiently perform large matrix LU decomposition on FPGAs with 

limited local memory is to block the algorithm. Wu, Duo and Peterson (2010) designed 

processing blocks for LU decomposition algorithm. With 36 blocks in a Xilinx Virtex-5 

xc5vlx330 FPGA proposed hardware achieved 8.50 GFLOPS at 133MHz. Design the block 

optimized floating point operations was the main problem of the algorithm. 

Benson et. al. designed Gusto (IRTUK et al, 2010) that is an automatic generation 

and optimization tool for matrix inversion architectures. Method chosen was LU 

decomposition for matrix inversion and it was compared to other matrix inversion methods 

achieving the best results. Another possible hardware implementation is using Graphic 



Perspectivas em Ciências Tecnológicas 

57                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Processing Units (GPU). Relatively recent examples are the works of Curry and Skjellum 

(2006) and Ye (2009). 

Based on previous presented works the design of a hardware/software co-design for 

LU decomposition, applied to matrix inversion problem, is needed because this method is 

able achieved the faster results compared to other inversion methods and all presented 

approaches developed solutions 100\% hardware. Execution time can be better on all-

hardware solutions, but the system loses all its flexibility. This flexibility can be achieved 

using soft-processors with hardware accelerators or multi-core systems. In this case 

flexibility is important because the inversion is usually used as a step for many methods and 

algorithms that are rarely implemented in 100% hardware systems. Next section presents this 

work proposed method and used tools. 

 

3 Tools and Methods 

 

The main goal of this work is a hardware/software co-design for LU decomposition 

algorithm applied on matrix inversion. The hardware/software co-design method chosen is a 

profile-based method. Hardware was designed for Altera Cyclone II FPGA1 in a DE2-70 

terasic board2. Altera provides hardware (Quartus II and Qsys)3 and software (Nios II EDS)4 

design tools. Altera also provides a soft-processor (Nios II) that can be configured on Qsys 

and programmed on Nios II EDS. All these tools and the profile-based design method are 

described in following sections.  

 

3.1 Development Tools 

 

Considering flexibility, cost, efficiency, and easy prototyping (BOBDA, 2007) a 

reconfigurable hardware was chosen for this work's system implementation. Previous 

experience with Altera devices resulted in the choice for Altera Cyclone II FPGA available 

in Terasic DE2-70 development board. Despite of the medium performance characteristics 

                                                           
1 http://www.altera.com/products/devices/cyclone2/cy2-index.jsp 
2 http://www.terasic.com.tw/cgi-bin/page/archive.pl?No=226 
3 http://www.altera.com/literature/lit-index.html 
4 http://www.altera.com/devices/processor/nios2/ni2-index.html 



Perspectivas em Ciências Tecnológicas 

58                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

of Cyclone II FPGA, this board has many advantages as many input/output interfaces and 

enough memory for this work's purpose. 

Altera devices are programmed by an integrated development environment (IDE): 

Quartus II5. This IDE has internal environments for hardware design, verification, synthesis, 

optimization and a fast interface to Qsys6. Qsys is another IDE used to configure system 

interconnections (with or without Nios II soft-processor) using Altera's AVALON7 memory 

mapped interface bus. 

The first version of the system, implemented in software, used Nios II as a processor. 

Nios II is fully configurable on Qsys and there are three versions of available which 

comparison is presented on Table 1. The effects of choosing each one of the three processors 

is discussed in results section. 

After soft-processor configuration and synthesis, Nios II EDS was used for software 

development. Nios II EDS generates all libraries and drivers to be used in the soft-processors 

configured using Qsys. After that the software was compiled by a GCC-based compiler that 

generates the .elf executable using designed processor's instruction set. 

Table1 – NIOS II Processors Features 
 

 Nios II /e Nios II /s Nios II /f 

License Free Buy Buy 

Jtag Debug Yes Yes Yes 

Custom 

Instructions 

256 256 256 

Brench Prediction No Static Dynamic 

Pipeline No 5-Stage 6-Stage 

Cache No Instruction Data+Instr. 

FPU No No No 

 

The advantage of having a GCC-based compiler in this case is that a profiling tool 

was already designed for it. The Gnu Profiler is a profiling tool that is integrated to GCC 

compiler and uses intrusive debugging code to measure each line and function execution 

times. Gnu Profiler also has options that generates different types of logs with flow graphs. 

                                                           
5 http://www.altera.com/products/software/quartus-ii/web-edition/qts-weindex.html 
6 http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/qts-qsys.html 
7 http://www.altera.com/literature/manual/mnl\_avalon\_spec.pdf 



Perspectivas em Ciências Tecnológicas 

59                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Compared to other profiling tools, Gprof proved to be an interesting choice. All 

implementations for a general purpose processor (GPP) were executed by an Intel Core i3 

processor with 3GB of DDR3 RAM using Code::Blocs IDE and MingW compiler on 

Windows 7. All tools described in this section were used to follow the chosen profile-based 

method for hardware software co-design. 

 

3.2 Design Method 

 

Figure 1 presents a flowchart of the chosen profile-based method. Two main cycles 

can be noticed: the first one refers to software development and the second one to hardware 

design. Sometimes system requirements can be met only with software optimizations. When 

software optimizations reach their limits without satisfying requirements, hardware design 

starts. On embedded systems, hardware design is a costly task comparing to software 

development, so a large amount of time can be saved choosing this method. Together with 

this fact the final solution can be more interesting considering cost, performance and energy 

consumption because only the portion of the system that needs acceleration will be 

implemented in hardware. 
 

 

Figure 1 - Modified Profile-Based Method. 



Perspectivas em Ciências Tecnológicas 

60                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Profiling-based methods have an important feature: hardware/software partitioning, 

that is the hardware/software co-design step where the system will be partitioned in hardware 

modules and software modules, is done intrinsically. This problem is very important in 

hardware/software co-design because solutions configure a very large search space and a 

wrong choice in this step may result in a system that may not respect initial constraints 

(HUBERT; STABERNACK, 2009). 

Proposed method was used to design the Nios II based solution that was used to 

achieve the main goal of this work. Results were compared to other implementation, a 

multicore system, that executes the same algorithm, modified to explore the concurrency of 

the system. Next section presents the other designed system. 

 

3.3 Multicore System 

 

Results of Nios II based hardware/software co-design were compared to a multi-core 

implementation. A parallel version of the matrix inversion using LU decomposition was 

executed in a quad-core system of Leon 3 soft-processors. This multicore system was based 

on the basic implementation suggested in grlib manual8 for each processor. This multicore 

system was chosen because parallel versions of algorithms for matrix computations tend to 

achieve better results and explores the natural parallelism on matrix computations memory 

accesses (GALLOPOULOS; PHILLIPE; SAMEH, 2016). 

 

Figure 2 – Parallel Algorithm. 

                                                           
8 http://www.gaisler.com/products/grlib/grlib.pdf  



Perspectivas em Ciências Tecnológicas 

61                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Parallel version of the algorithm proposed by Michailidis e Margaritis (2010) (Figure 

2) needed 3 loops for a parallel execution. For each iteration of the external loop there is a 

division and elimination of matrix lower and upper elements. Sequential LU decomposition 

in k iteration executed (n-k-1) arithmetic operations while parallel algorithm executes (n-k-

1)² * 2. Assuming that for each arithmetic operation one time unit is consumed, parallel 

algorithm's execution time is given by Equation 7 that results in a time complexity of O(n³). 

 

Leon 3 processor, whose architecture is presented in Figure 2, is a 32-bit soft-

processor compatible to SPARC V8 architecture. Processor is developed to multi-processing 

systems up to 16 processors that can be implemented in AMP (Asymmetric Multiprocessing) 

and SMP (Synchronous Multiprocessing). One interesting feature of this processor is that it 

offers high performance for low frequencies applications optimizing area and energy 

consumption together with a floating-point unit already implemented. 

 

Figure 2 – Leon 3 processor architecture. Available in: http://www.esa.int/var/esa/storage 

/images/esa_multimedia/images/2012/02/leon3_architecture/14422173-1-eng-GB/LEON3_ 

architecture_large.jpg  

 



Perspectivas em Ciências Tecnológicas 

62                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Designed quad-core system (Figure 3) is composed by four Leon 3 processors 

configured with all components as presented in the processor's diagram9. System memory is 

composed by internal instruction cache memories of 32Kb and internal data cache memories 

of 16Kb together with an external DDR 2 memory of 256MB in four internal 64-bit blocks. 

Processors access external DDR 2 memory using a mutual exclusion policy. Multi-processor 

control was managed by the real-time operating system (RTOS) eCos10. This system was 

synthesized for a Xilinx ML507 Evaluation Platform11 that contains a Virtex $5$ FPGA. 

Next section presents the results and analysis. 

 

Figure 3 – Quad-core architecture. 

 

4 Results 

 

This section presents a comparison between the results of the two designed systems. 

Leon 3 CPU, as described in previous section, composed by a 32kb cache, a floating-point 

unit, 256 MB of DDR2 SDRAM achieving 80Mhz clock. Four different versions of Nios II 

soft-processor were configured: Nios II /f (the pure fast version), Nios II /ff (fast version with 

                                                           
9 http://www.gaisler.com/doc/leon3\_product\_sheet.pdf  
10 http://ecos.sourceware.org/ 
11 http://www.xilinx.com/products/boards/ml507/docs.htm  



Perspectivas em Ciências Tecnológicas 

63                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

a floating-point unit(FPU) without exclusive hardware for floating-point division), Nios II 

/ffd (full-featured floating-point unit) and Nios II /ffdpll (full-featured floating-point unit and 

a Phase-Locked Loop(PLL) to increase clock frequency from 50MHz to 100MHz). Designed 

processors without PLL achieved a 50MHz clock due to the DE2-7012 board oscillator, and 

all versions had 90Kb of on-chip memory. Floating-point unit using in Nios II processors 

were configured as suggested on Nios II manual13.  Figure 4 presents the results of the initial 

experiments with Nios II designed processors and the single-core Leon 3 processor 

calculating a LU decomposition for a 50 x 50 matrix. 

 

Figure 4 – Initial Results for NIOS II processors.  

 

Nios II processors that included a FPU achieved better execution time when 

compared to Leon 3 single-core processor, this result is caused by eCos system overhead on 

Leon 3 and DDR2 SDRAM access time. Nios II had only the HAL as an operating system 

and no external memory access. These initial execution times were measured using GCC 

compiler tool Gprof that allowed the execution time of each algorithm line to be analyzed. 

Initial designs of Nios II processors included a 90Kb cache that was not sufficient to 

store larger matrices. This problem was solved by a SDRAM of 64MB that was added to 

Nios II hardware. In this point, after using Gprof to evaluate the algorithm lines execution 

                                                           
12http://www.terasic.com.tw/cgi-bin/page/archive.pl?No=226  
13 https://www.altera.com/en\_US/pdfs/literature/hb/nios2/n2cpu\_nii5v1.pdf 



Perspectivas em Ciências Tecnológicas 

64                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

time, the execution time results were obtained using hardware timers. Table 2 presents the 

results of an 50 x 50 matrix  LU decomposition for the following processors: Leon 3 single-

core, Nios II /ffdpllram (fast with full-featured floating-point unit, phase-locked loop and 

SDRAM) and Nios II /ffdpllramon (fast with full-featured floating-point unit, phase-locked 

loop and SDRAM together with on-chip memory). SDRAM memory controller that was 

added to Nios II processors caused an overhead on execution time. However, times are lower 

because there was no Gprof debug directives added to generated code and so execution time 

tends to be lower. 

 

Table 2 – Execution times for NIOS II processors with SDRAM 

 

Processor Leon 3 NiosII/ffdpllram NiosII/ffdpllramon 
Exec. Time(s) 0.765 0.185 0.172 

 

Code profiling analysis using Gprof revealed that the most time-consuming routines 

included floating-point arithmetic operations. This fact explains the difference between Nios 

II /f and Nios II /ffd results. In this point of the design two alternatives were available: the 

first was to design specific hardware to accelerate the more time-consuming routines without 

doing any software changes and the second was to optimize compilation and use fixed-point 

arithmetic. Developers decided to take the second option first. Fixed-point arithmetic will 

reduce hardware size because the FPU was no longer necessary. Table 3 presents compiler 

optimization options results for Nios II processor considering a LU decomposition of a 50 x 

50 matrix. 

Table 3 – Compiler Optimizations 

Optimization Level off O1 O2 O3 OS (size) 

Execution Time (s) 0.186 0.185 0.186 0.187 0.193 

 

The size optimization achieved the worst results and the final generated code was not 

reduced significantly. The difference between the optimization levels are the number of 

optimization directives the compiler uses. Higher matrix sizes achieved better execution 

times using O1 because only the most significant optimization directives were used. Fixed-

point arithmetic was implemented in software by a C++ library. 16-bit fixed-point 



Perspectivas em Ciências Tecnológicas 

65                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

representation achieved an acceptable error of 0.0001, but the execution time was 0.980s. 

Execution time results were better than Nios II /f results ($2.670$s) but unacceptable when 

compared to processors using FPU execution time (0.173s). Cyclone II FPGA logic elements 

utilization decrease from 15% to 6% without the FPU and this fact should be considered in 

cases that area constraints are more important than execution time. With this code, the 

software development cycle found an acceptable optimized code. 

Hardware development cycle started with the multi-core Leon 3 processors 

evaluation and the design of a co-processor for Nios II /ffdpllramon. The results for Leon 3 

processors with 2,3 and 4 cores executing the LU decomposition for a 50 x 50 matrix (Figure 

5). Execution times for 3 and 4 cores are similar because memory access became an issue for 

more than 3 cores. Compared to Nios II execution times Leon 3 multi-core system results are 

considerably slow. These bad results are caused by operating system overhead, thread 

creation overhead, memory access, algorithm parallelization and the system clock of 80MHz. 

 

 

Figure 5 – Multi-core Leon 3 processors results. 

 

Code profiling classified one specific line as the most time-consuming:  

sum += ((j==k)?1.0:matrix[j*maxsize+k])*matrix[k*maxsize+i]; 

 

where sum and matrix elements are floating-point numbers. This line executes some 

floating-point operations to rejoin L and U matrices. Designed co-processor for Nios II 

/ffdpllramon executes the same operations. To increase hardware optimization level other 



Perspectivas em Ciências Tecnológicas 

66                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

three custom instructions were added for index comparisons, index calculation and type 

conversion (Figure 6). 

 

 

Figure 6 – Custom instructions designed for hardware optimizations 

 

Co-processor's interface to Nios II was composed by parallel input-output (PIO) 

interfaces of 32 bits (Figure 7). Custom instructions are all combinational with two operands 

of 32 bits and 32 bits results. All values needed for co-processor's execution (j,k and 2 matrix 

values) were sent to the hardware using input parallel interfaces and, after the execution, the 

result was available in the output parallel interface. Floating-point operations were 

implemented using Altera megafunctions that are designed in IEEE 754 pattern. 

Table 4 – Area consumption for designed processors 
 

System Leon 3 quadcore Nios II 

Logic Elements 23860 12868 

 

Comparing final systems logic elements consumption, Leon 3 quad-core 

implementation in a Virtex 5 Xilinx FPGA is compared to Nios II implementation in a 

Cyclone 2 Altera FPGA. Considering that Xilinx and Altera logic elements design are 

different this comparison is just an illustrative comparison of area consumption to help 

developer's choice for one or another design approach. Table 4 presents the results. 

Consumed area of Leon 3 quad-core system is almost $2$x Nios II area with all optimization 

hardware included. 



Perspectivas em Ciências Tecnológicas 

67                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

 

Figure 7 – Designed co-processor. 

 

Table 5 shows execution times for the final architectures. These results suggest that 

hardware co-processor accelerates execution time for matrix sizes lower than 400 x 400. For 

bigger matrices, the execution time increases significantly. This analysis showed that the 

simpler hardware, only with a floating-point unit as custom instruction, can achieve good 

execution times. In Table 5 the execution of an LU decomposition by different processors is 

presented. The processors were: a Leon 3 processor with one core and eCos; Nios II with 

HAL as operating system only with floating-point unit; Nios II with HAL, FPU and all 

designed hardware and Nios II with all designed hardware running µC/OS-II14 to compare to 

eCos OS. This table suggests that all designed hardware achieved better execution times and 

that Leon 3 processor, although configured with only one core, is considerably slow. 

Figure 8 presents a comparison of the results for each processor and different matrix 

sizes. Leon 3 processors were slower than all Nios II processors and µC/OS-II overhead is 

the small difference between Nios II + FPU+ HW + OS and Nios II + FPU+ HW processors. 

Faster results were achieved by Nios II processor only with FPU unit. The worse execution 

times of the other two Nios II processors were caused by communication overhead between 

the processor the hardware optimizations. 

 

 

 

                                                           
14 http://www.altera.com/literature/lit-index.html 



Perspectivas em Ciências Tecnológicas 

68                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

Table 5 – Final results for designed processors 

 

 Leon 3 Nios II Nios II + HW Nios II+µC 

4x4 (1000x) 0,891 0,172 0,128 0,130 

50x50 0,863 0,131 0,170 0,172 

100x100 3,67 1,053 1,36 1,39 

200x200 26,22 8,792 11,35 11,51 

300x300 87,30 30,897 39,49 40,16 

400x400 207,58 74,594 94,95 96,37 

 

 

 

Figure 8 – Final execution time comparison for selected processors. 

 

Conclusion 

 

This work presented a hardware/software co-design for LU decomposition algorithm 

applied on matrix inversion. Results were compared between different processors: Leon 3 

soft-processor (with 1 to 4 cores) and hardware/software co-designs using Nios II processor 

with hardware co-processors and custom instructions. Nios II hardware/software co-design 

achieved better execution times, small final system area (as expected) with the same error of 

0.00001 magnitude. 



Perspectivas em Ciências Tecnológicas 

69                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

The parallelization of the algorithm, the need of a operating system, a floating-point 

unit that is not pipelined, memory access problems and policies were responsible for the bad 

Leon 3 quad-core system performance. Nois II results showed that a simpler hardware can 

achieve good results without consuming design time and respecting the main constraints. 

Compared to presented previous works, this work results achieved higher execution times 

but increased the flexibility of the system by using a soft-processor. In this specific case 

where matrix inversion is only a small part of many systems, flexibility is a key constraint. 

Future works leads to hardware development for Leon 3 processors and/or core 

specialization. With a hybrid quad-core system the execution time could become more 

acceptable. Other possible experiments can be executed using Leon 3 and Nios II quad-core 

systems, and between these systems and other system that uses Xilinx MicroBlaze soft-

processor. 

 

References 

BLASER, M. Fast Matrix Multiplication. No. 5 in Graduate Surveys, Theory of 

Computing Library, 2013. 

 

BOBDA, C. Introduction to Reconfigurable Computing: Architectures, Algorithms, and 

Applications. First Edition, Springer Publishing Company, Incorporated, 2007. 

 

CURRY, M.; SKJELLUM, A. Parallel lu factorization of sparse matrices on fpga-based 

configurable computing engines: Research articles. In: Supercomputing ’06. p. 1. John 

Wiley and Sons Ltd., Tampa, FL, 2006. 

 

GALLOPOULOS, E.; PHILLIPE, B., SAMEH, A. Parallelism in Matrix Computations. 

No. 1 in Scientific Computation, Springer Netherlands, 2016. 

 

HUBERT, H.; STABERNAK, B. Profiling-based hardware/software coexploration for the 

design of video coding architectures. IEEE Circuits  and Systems for Video Technology 

n.19. v. 11, p. 1680-1691, 2009. 

 

IRTURK, A.; BENSON, B.; MIRZAEI, S.; KASTNER, R. Gusto: An automatic generation 

and optimization tool for matrix inversion architectures. ACM Trans. Embed. Comput. 

Syst. n. 9, p. 1-21, 2010. 

 

JOHNSON, J., CHAGNON, T., VACHRANUKUNKIET, P., NAGVAJARA, P., 

NWANKPA,C. Sparse lu decomposition using fpga. Para International Workhop 

Proceedings. 2008. 

 



Perspectivas em Ciências Tecnológicas 

70                                Perspectivas em Ciências Tecnológicas, v. 6, n. 6, Jun. 2017, p. 53-70 

MICHAILIDIS, P.; MARGARITIS, K.. Implementing parallel lu factorization with 

pipelining on a multicore using openmp. IEEE CSE p. 253 –260. 2010. 

 

PRESS, W. H.; TEUKOLSKY, S .A.; VETTERLING, W.T.; FLANNERY, B. P. 

Numerical recipes in C. Second Edition. The art of scientific computing. Cambridge 

University Press, New York, NY, USA, 1992. 

 

SYED, A. A Hardware Interpreter for Sparse Matrix LU Factorization. Master dissertation 

in Computer Science . University of Cincinnati, 2002. 

 

THIBALT, S.; MULLIN, L. A pipeline implementation of lu-decomposition on a 

hypercube pp. 1–6, 1994. 

 

WANG, X.; ZIAVRAS, S.G. Parallel lu factorization of sparse matrices on fpga-based 

configurable computing engines: Research articles. Concurrent Computing : Practical. 

Experiments. n. 16, p. 319-343, 2004. 

 

WU, G.; DOU, Y.; PETERSON, G. Blocking lu decomposition for fpgas. Proceedings of 

18th IEEE Annual International Symposium on Field Programmable Custom 

Computing. p. 109-112,  2010. 

 

YE, Z. Implementation of LU Decomposition and QR Decomposition on Parallel 

Processing Systems. TU/e Electronic Systems, 2009. 


